EVIDENCE FOR THROUGH-BOND INTERACTION BETWEEN MUTUALLY PERPENDICULAR PI SYSTEMS

Rolf Gleiter, Rudolf Haider, Jens Spanget-Larsen and Peter Bischof

Institut für Organische Chemie der Universität, Im Neuenheimer Feld 270, D-6900 Heidelberg 1, West-Germany

Summary: Comparison of the photoelectron (PE) spectra of tetravinylmethane ($\underline{1}$) and trans, trans, trans-1,2,3,4-tetravinylcyclobutane ($\underline{2}$) indicates that through-bond interaction in $\underline{2}$ is comparable in magnitude to the through-space spiro interaction in $\underline{1}$. A similar result is obtained by comparison of the UV absorption spectra of 9,9'-spirobifluorene ($\underline{3}$) and 8b,8c,16b,16c -tetrahydrocyclobuta[1,3-1:2,4-1']diphenanthrene ($\underline{4}$).

On the basis of model calculations we have previously postulated¹⁾ that the through-bond interaction between two π systems linked via a cyclobutane ring as in system B should be similar in magnitude to the spiro interaction in the

corresponding system A. Simple model systems to test this hypothesis are tetravinylmethane $(\underline{1})^{2}$ and the tetravinylcyclobutane $\underline{2}^{3}$, as well as spirobifluorene $(\underline{3})^{4}$ and the phenanthrene dimer $\underline{4}^{5}$. In this communication we discuss the PE data for $\underline{1}$ and $\underline{2}$ and the UV absorption data for $\underline{3}$ and $\underline{4}$.

The positions of the lowest PE bands of $\underline{1}^{2b,6}$ and $\underline{2}^{7)}$ are indicated in Fig. 1. The orbital assignment is based on the results of MO calculations⁸⁾. The

Fig. 1 Correlation between the first bands in the PE spectra of $\underline{1}$ and $\underline{2}$. energy difference between the a_2 and b_1 levels for $\underline{2}$ is similar in magnitude (but different in sign) to the splitting of the corresponding levels for $\underline{1}$, in agreement with our general predictions¹⁾.

Comparison of the PE data for $\underline{3}^{9}$ and $\underline{4}$ is complicated by the poor spectral resolution in the case of $\underline{4}^{11}$. However, the similarity of the near-UV absorp-

tion spectra of these compounds is consistent with the assumption that longrange conjugative effects (i.e., spiro interaction in $\underline{3}$, through-bond interaction in $\underline{4}$) play a similar role in both cases. Wavenumber, polarization and relative intensity of the first five singlet transitions for $\underline{3}^{10,11}$ and $\underline{4}^{11}$ in stretched polyethylene at 77 K is indicated in Fig. 2. According to the re-

Fig. 2 Correlation between the first bands in the electronic absorption spectra of <u>3</u> and <u>4</u>. Broken (solid) bars indicate polarization direction perpendicular (parallel) to the long-axis of the molecule.

sults of simple model calculations, the fourth transition D which has no obvious counterpart in the spectrum of biphenyl or fluorene can be assigned to a state with large charge resonance character¹¹⁾ (this result is in contrast to the interpretation of Sagiv et al.¹⁰⁾). The considerable intensity of the observed D band (f \sim 0.5) can be explained in part by long-range conjugative effects and configuration interaction¹¹⁾.

We are grateful to the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie and the BASF Aktiengesellschaft in Ludwigshafen for financial support.

References

- P. Bischof, R. Gleiter, R. Haider, Angew. Chem. <u>89</u>, 122 (1977); Angew. Chem. Int. Ed. Engl. 16, 100 (1977); J. Am. Chem. Soc. 100, 1036 (1978).
- (a) J. G. Berger, E. I. Stogryn, A. A. Zimermann, J. Org. Chem. <u>29</u>, 950 (1964);
 (b) R. Gleiter, R. Haider, P. Bischof, H. J. Lindner, in preparation.
- (a) R. J. Brousseau, Ph.D. Thesis, Harvard University 1976; (b) R.
 Gleiter, R. Haider, K. Gubernator, P. Bischof, in preparation.
- 4) R. G. Clarkson, M. Gomberg, J. Am. Chem. Soc. 52, 2881 (1930).
- 5) G. Wittig, G. Skipka, Liebigs Ann. Chem. 767, 59 (1973).
- A. Schweig, U. Weidner, J. G. Berger, W. Grahn, Tetrahedron Lett. 557 (1973).
- 7) The gas phase $\text{He}(I_{\alpha})$ PE spectrum of $\underline{2}$ shows three bands below 10 eV with relative integrated intensities 1:1:2. The band maxima are at (1) 9.01 eV, (2) 9.30 eV, and (3)(4) 9.96 eV^{3b)}.
- 8) The assignment of the PE bands is based on the assumption of S_4 symmetry for $\underline{1}^{2b}$ and D_{2d} symmetry for $\underline{2}^{3b}$; it is assumed that the doubly degenerate e levels are split by 0.4 - 0.5 eV as a result of Jahn-Teller effects in the radical cations.
- 9) A. Schweig, U. Weidner, D. Hellwinkel, W. Krapp, Angew. Chem. <u>85</u>, 360 (1973); Angew. Chem. Int. Ed. Engl. 12, 310 (1973).
- 10) J. Sagiv, A. Yogev, Y. Mazur, J. Am. Chem. Soc. <u>99</u>, 6861 (1977).
- 11) J. Spanget-Larsen, R. Haider, R. Gleiter, submitted for publication. The polarized absorption spectra of $\frac{3}{2}$ and $\frac{4}{2}$ were measured in stretched polyethylene at 77 K and reduced according to the TEM procedure¹²⁾.
- 12) E. W. Thulstrup, J. Michl, J. Am. Chem. Soc. <u>104</u>, 5594 (1982), and literature cited.

(Received in Germany 23 December 1982)